
NASA Contractor Report 181860

ICASE Report No. 89-37

ICASE
BUNCH-KAUFMAN FACTORIZATION FOR REAL

1.0 SYMMETRIC INDEFINITE BANDED MATRICES

T"

NMark T. Jones
Merrell L. Patrick

I

Contract No. NAS1-18605
May 1989

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

DTIC
NASA ELECTENASA 3199 flI

National Anronauics and AUG 2
Space Administration

Hampton, Virginia 23665-5225

tr89 8 23fm41 6A- ovW-1 pde wlam 8 9 8 23 4 16
IVWW"*lm Uahd



Recently, ICASE has begun differentiating between reports with a mathemat-
ical or applied science theme and reports whose main emphasis is some aspect of
computer science by producing the computer science reports with a yellow cover.
The blue cover reports will now emphasize mathematical research. In all other
aspects the reports will remain the same; in particular, they will continue to be
submitted to the appropriate journals or conferences for formal publication.

n Imm iN mll mmMNNNF lm i



Bunch-Kaufman Factorization for Real
Symmetric Indefinite Banded Matrices

Mark T. Jones*and Merrell L. Patrick*t

Abstract

The Bunch-Kaufman algorithm for factoring symmetric indefinite
matrices has been rejected for banded matrices because it destroys the
banded structure of the matrix. Herein, it is shown that for a sub-
class of real symmetric matrices which arise in solving the generalized
eigenvalue problem using Lanczos's method, the Bunch-Kaufman al-
gorithm does not result in major destruction of the bandwidth. Space
time complexities of the algorithm are given and used to show that
the Bunch-Kaufman algorithm is a significant improvement over LU
factorization. K

*Department of Computer Science, Duke University, Durham, NC 27706
tThis research was supported by the National Aeronautics and Space Administration

under NASA contract Nos. NAS1-18107 and NAS1-18605 and the Air Force Office of
Scientific Research under AFOSR grant No. 88-0117 while the authors were in residence
at ICASE. Additional support was provided by NASA grant No. NAG-1-466.



1 Introduction

The Bunch-Kaufman algorithm is considered one of the best methods for
factoring full, symmetric, indefinite matrices [BK77], [BG76]. It has also
been modified and successfully used to factor sparse matrices [DRMN79].
However, to date it has been rejected for banded, symmetric indefinite ma-
trices because it destroys the banded structure of the matrix [BK77]. Herein
it is shown that for a subclass of real symmetric indefinite matrices, which
arise in solving the generalized eigenvalue problem using Lanczos's method,
the Bunch-Kaufman algorithm does not result in major destruction of the
bandwidth. Furthermore, for our class of problems, the Bunch-Kaufman
factorization algorithm is a significant improvement over LU factorization,
the standard of comparison for such methods [BK77]. In addition to taking
advantage of symmetry, the Bunch-Kaufman algorithm yields the inertia of
the matrix essentially for free [BK77], which is important in eigenvalue cal-
culations. LU factorization does not yield the inertia as a by-product and
destroys the symmetry of the matrix, thus increasing storage requirements
for its implementation.

In section 2 we give one of the several variations of the Bunch-Kaufman
algorithm and in section 3 describe a subclass of matrices to which we apply
it. An efficient implementation of the method is described in section 4 and
the space/time complexity of the implementation is disussed in section 5.
Conclusions are drawn in section 6.

2 The Bunch-Kaufman Algorithm

The Bunch-Kaufman algorithm factors A, an n x n real syi, netric indefinite
matrix, into LDLT while doing symmetric permutations o. to maintain
stability, resulting in the following equation:

PAPT = LDL. (1)

Although several variations of the algorithm exist, algorithm D of the
Bunch-Kaufman paper is the least destructive of the banded structure
[BK77J. The algorithm is shown in figure 1.

2



1) fori= 1,n

begin

2) if the previous step was not a 2x2 pivot then

begin
3) A = Maxj=i+l,. I aj,j

4) set r to the row number of this value

5) ifAa <1 ai,ij then

begin

6) perform a lx1 pivot

end

else

begin

7) u = maxi+l,n I ar, ,

8) if aA 2 < a 1 ai, I then

begin Aooession For

9) perform a lx1 pivot NTIS -RA&I

end DTI TAB
Unannouiaced []

else Juot it toatlo

begin

10) exchange rows and columns r and i + 1 By
DNLst rlbut ion/

11) perform a 2x2 pivot Availability Codes

end A vail and/or

end Dist Special

end -
12) end

13) if inertia is desired, then scan the D matrix

Figure 1: The Bunch-Kaufman Factorization Algorithm

3



The parameter, a, is chosen such that stability is maximized and has
been shown by Bunch and Kaufman to be approximately 3.525 1BK77].
The exchange of rows and columns in step 10 maintains the symmetry of
the matrix, unlike LU factorization which destroys the symmetry of the
matrix by permuting only rows.

3 Applicable Set of Matrices

Bunch and Kaufman show that, in general, if m is the semi-bandwidth of
a matrix being factored, then a 2x2 pivot can increase the semi-bandwidth
from m to (2m) - 2 and that this can happen at every step thus resulting
in the complete destruction of the band structure due to fill-in outside the
band [BK77. However, it will be shown in section four that for a subclass

of matrices this fill-in can be controlled. The number of 2x2 pivots is
bounded above by the number of negative eigenvalues of A, because each
2x2 pivot represents a positive-negative eigenvalue pair [BK77]. Also, the
increase of the semi-bandwidth from m to (2m) - 2 is a worst case that
in practice is not likely to occur. Therefore, for matrices with a small
number of negative eigenvalues (in relation to the size of the matrix), it is
possible to use Bunch-Kaufman factorization with very little fill-in. Such
matrices arise in eigenvalue calculations where the smallest eigenvalues are
sought. Methods such as inverse iteration and Lanczos's method are often
used to find the smallest eigenvalues of a matrix, A. To do so, they often
require the factorization of a matrix, (A - aI), where a is normally very
near the left end of A's spectrum, but may not be to the left of the smallest
eigenvalue, thus the matrix is indefinite [NOPT83] but has only a small
number of negative eigenvalues. These matrices can be banded, as they
are in structural mechanics [BH87]. The difficulty is that the location and
amount of the fill-in outside the band is not possible to predict a priori.
In the following section, a detailed algorithm which dynamically allows for
fill-in during factorization will be presented.

4 Efficient Implementation of the Algorithm

4



X rowk--+ eeex

0 .exx -rowk+1-- 0 o x x
0 0o 0 X XX 000 oX XX

00 O0 xxxx O00o xxxx
0000O xxxxx O000O xxxxx

0 0 0 0 0 X X X X X--rowr--- 0 0 0 0 0 x x x xx x
O00000xxxxxx O0000fxxxxxx

O000000xxxxxx O0000ffxxxxxx

O0000000xxxxxx O0000ff fxxxxxx

O00000000xxxxxx O0000f fff xxxxxx

O000000000xxxxxx O0000fffffxxxxxx

00000000000xxxxxx d0000000000xxxxxx

Figure 2: Example of Fill-in (Note: this is an example of worst case fill-in)

As the following algorithm is executed the original matrix is copied,
piece-wise, from one place in memory to another. This allows for dynamic
allocation of fill-in as well as only requiring part of the matrix to be in main
memory at any particular time. Fill-in only takes place in a small triangle
when a 2x2 pivot occurs. If a pivot occurs at step k, this triangle is of
the form shown in figure 2, where o's represent eliminated elements in L,
x's are uneliminated non-zeros, 0's are zeros outside the band for which no
storage is needed, and fs are areas where fill occurs. The triangle of fill is
from row r + 1 to row r + m, where m is the semi-bandwidth (this area may
already contain non-zeros depending on the value of r, so no extra memory
may be needed). The algorithm is as follows:

0) set upto to 0

1) fori= 1, n

begin

2) if the previous step was not a 2x2 pivot then

begin

3) read rows upto to min(n,i + m) of the matrix A into L,

5

0- 0mm 0~n 0I 0nn 0mmmm X



no extra space for fill needs to be added for these rows

4) set upto to min(n,i + m)

5) A =: max~ij+i,upto I aj,

6) set r to the row number of this value

7) ifa < a,, I then

begin

8) go to 11

end

9) a = maxj,= 1,upto I a,,,

C (it may be necessary to access some elements that are not

C read in at this point, but the number of elements is small,

C so they may be read into L or simply discarded,

C this is only a concern if i/o is taking place)

10) ifaA 2 < a I h,, I then

begin

C perform a lx1 pivot

11) set pi = i
12) set di,j = aj,

13) set dj,+l = 0.0

14) set aj,, = 1.0

15) for j =i + 1, upto

begin

16) v= aj,

17) vij = ajj/ajj

18) ajj vij

end

19) for j =i + 1, upto

begin

20) for k =i+ 1,j

begin

6



21) aj,k = aj,k - VlIVk

end

end

end

else

begin

C permute the matrix and then perform a 2x2 pivot

22) read rows upto to min(n,r + m) of the matrix A into L,

and allocate space for the fill triangle

23) set upto to min(n,r + m)

24) exchange rows and columns r and i + 1

25) set pi = i

26) set pj+= r

27) set di, = aj,

28) set di+,,i+l = ai+,,i+l

29) set dj,+j = ai+l,

30) set di+l,i+2 = 0.0

31) set determinant = (((di,idi+l,,+,)/d,+,) - dii+,)dii+l

32) for j = i + 2, upto

begin

33) vj = aj,j

34) v2j =aj,i+l

35) vIj aj,idi+,,i+l - aj,i+ldi,i+l

36) vl2j -aj,d,j+i + aj,j+1di,

37) aj,, = vij

38) aj,i+l = v12j

end

39) for j = i + 2, upto

begin

40) for k = i + 2, j

7



begin

41) aj,k = a,,k - (vljvk + vl2jv2k)

end

end

end

end

end
P is a vector representing the permutation matrices. The only time fill

outside the band occurs is in step 24 of the algorithm when a 2x2 pivot
occurs and then storage for the fill is allocated dynamically.

5 Speed and Storage Analysis

In this section we compare the space/time requirements of our implementa-
tion of the Bunch-Kaufman algorithm with LU factorization. The storage
requirements for both algorithms will be analyzed for two different situa-
tions: 1) when simply factoring a matrix that falls in the subclass described
in section 2, and 2) when factoring a matrix pencil such as (K - aM) where
K and M are symmetric, K is positive definite and a is near the left end
of K's spectrum.

In the first situation, the storage required by the algorithm presented
in section 4 is significantly less than that required by LU factorization for
the set of matrices that was described in section 2. The storage required
by LU factorization is approximately 3mn [BK77]. The storage needed by
this implementation of Bunch-Kaufman is mn for the original storage from
which the matrix is copied, plus mn for the locations to which the matrix
is copied, plus an additional amount C which is the amount of storage
necessary for the fill-in triangles. C is much less than rnn, because of the
small number of negative eigenvalues. In addition, two vectors of length n
are needed for storing the D matrix giving a total of 2n(m+l) +C. So when
C is small, approximately (m - 2)n storage locations are saved factoring
matrices using the Bunch-Kaufman algorithm instead of LU factorization.

In the second situation (which arises in an efficient implementation of
Lanczos's method for solving Kx = AMx), the shift a may change during

8



Method adds. mults. divisions sq. roots comps. fill
Chol. 44433080 48140336 1824 1824 0 0

B-K 48277445 48686784 1831 0 446326 2083
LU 137241687 137648943 1823 0 409079 2mn

Figure 3: Operation Counts for Factorization: n=1824, m=240, 5 negative
eigenvalues

Method adds. mults. divisions sq. roots comps. fill
Chol. 44433080 48140336 1824 1824 0 0
B-K 52023663 52445756 1837 0 485452 14837

LU 137412094 137819350 1823 0 409079 2mn

Figure 4: Operation Counts for Factorization: n=1824, m=240, 19 negative
eigenvalues

execution of the algorithm, so K and M must be saved throughout the com-
putation. In this situation, the storage requirements for LU factorization

is increased to (4mn), but the storage needed by Bunch-Kaufman remains
the same, namely 2n(m + 1) + C making it even more attractive in this
(.se.

The operation counts for factorization are the same in both cases. The

operation coint for Bunch-Kaufman is significantly less than that of LU
factorization because symmetry is exploited and the fill-in is limited. For
simplicity, the operations added by the fill-in during Bunch-Kaufman are
ignored, since the amount that is added is trivial. The high order term
in the operation counts for Bunch-Kaufman is approximately nm 2 arith-
metic operations plus approximately nm comparisons while the high orler
term for the operation counts for LU is approximately 4nm 2 arithmetic
operations plus approximately nm comparisons.

The Bunch-Kaufman method also vectorizes well if the semi-bandwidth
is large enough. The gains from vectorization are much the same as those

9



Method adds. mults. divisions sq. roots comps. fill
Chol. 3321051 3434180 1980 1980 0 0
B-K 3322513 3435664 1985 0 142978 22

LU 10342067 10455196 1979 0 115108 2mn

Figure 5: Operation Counts for Factori:ation: n=1980, m=59, 5 negative

• .: ,envalues

Method adds. mults. divisions sq. roots comps. fill
Chol. 3321051 3434180 1980 1980 0 0

B-K 3324670 3437856 1985 0 152370 57

LU 10618321 10731450 1979 0 115108 2mn

Figure 6: Operation Counts for Factorization: n=1980, m=59, 15 negative
eigenvalues

N M No. of neg. Eigenvalues No. of 2x2 pivots

1824 240 5 4
1824 240 19 7

1980 59 15 3

1980 59 5 3

Figure 7: The number of 2x2 pivots for each problem

10



for Choleski factorization.
The operations counts for both types of factorization, as well as Choleski

factorization, when using Lanczos's method for solving the generalized
eigenvalue problem are given in figures 3, 4, 5, and 6. The fill-in dur-
ing factorization is also shown in these figures. The amount of fill-in when
using Bunch-Kaufman can be seen to increase when the number of nega-
tive eigenvalues increases. The implementation of LU factorization that is
used for the comparison is sgbfa from the Linpack package [DBMS78]. The
measurements for Choleski factorization are given only as a reference point,
the matrices that were solved were shifted to make them positive definite
for the Choleski factorization runs, otherwise Choleski factorization would
have failed due to the indefiniteness of the system. These matrices arise
from a problem in a structural engineering application [BH871. In figure 7
the number of 2x2 pivots that occurred in each problem can be examined.

The solution phase that occurs after factorization takes slightly longer
for Bunch-Kaufman than for LU factorization due to the fact that three
matrices, L, D, and L t , arise from Bunch-Kaufman (see equation 1) rather
than just two matrices, L and U, that arise from LU factorization. This
solution phase however takes much less time than factorization, so this is
not significant.

6 Conclusions

The Bunch-Kaufman method has been shown to be a more efficient fac-
torization method than LU factorization in terms of time and storage for
banded real symmetric indefinite matrices with a small number of eigenval-
ues. An algorithm has been presented that greatly limits the fill needed for
factorization as well as taking advantage of the symmetry of the matrix.
This method has been shown to be nearly as stable as LU factorization by
Bunch [BK771.

References

[BG76] Victor tarwe- Find Alan George. A comparison of algorithms
for solving -; anetric indefinite systems of linear equations.

11



ACM Transactions on Mathematical Software, 2(3):242-251,
September 1976.

[BH87] Charles P. Blankenship and Robert J. Hayduk. Potential su-
percomputer needs for structural analysis. Presentation at the
Second International Conference on Supercomputing, May 3-8
1987. Santa Clara, CA.

[BK771 James R. Bunch and Linda Kaufman. Some stable methods
for calculating inertia and solving symmetric linear systems.
Mathematics of Computation, 31(137):163-179, January 1977.

[DBMS78] J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart.
LINPACK User's Guide, 1978.

[DRMN79] I. S. Duff, J. K. Reid, N. Munksgaard, and H. B. Nielsen. Di-
rect solution of sets of linear equations whose matrix is sparse,
symmetric and indefinite. J. Inst. Maths. Applics., 23:235-250,
1979.

[NOPT83] Bahram Nour-Omid, Beresford N. Parlett, and Robert L. Tay-
lor. Lanczos versus subspace iteration for solution of eigenvalue
problems. International Journal for Numerical Methods in En-
gineering, 19:859-871, 1983.

12



Report Documentation Page

I Report No 2. Government Accession No 3 Recipient's Catalog No.
NASA CR-181860

ICASE Report No. 89-37

4 Title and Subtitle 5. Report Date

Bunch-Kaufman Factorization for Real Symmetric
Indefinite Banded Matrices May 1989

6 Performing Organization Code

7 Authoris 8. Performing Organization Report No.

Mark T. Jones 89-37

.errell L. Patrick 10 Work Unit No

9 Performing Organizaton Name and Address 50 5-90- 21-01

Institute for Computer Applications in Science 11 Contract or Grant No
and Engineering

Mail Stop 132C, NASA Langley Research Center NASI-18605
Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Contractor Report

Langley Research Center 14. Sponsoring Agency Code

Hampton, VA 23665-5225

15. Supplementary Notes
Langley Technical Monitor: Journal of Approximation

Richard W. Barnwell Theory

Final Report

16. Abstract

The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices has been
rejected for banded matrices because it destroys the banded structure of the matrix.
Herein, it is shown that for a subclass of real symmetric matrices which arise in
solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman
algorithm does not result in major destruction of the bandwidth. Space time
complexities of Lh algorithm are given and used to show that the Bunch-Kaufman
algorithm is a significant improvement over LU factorization.

17. Key Words (Suggested by Authols)) 18. Distribution Statement

symmetric, indefinite, banded matrices, 64 - Numerical Analysis

Bunch-Kaufman algorithm

Unclassified - Unlimited
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price

Unclas s ified Unclass i fied 14 A0 3

NASA FORM 16 OCT 96

NASA-Langley, 1989


